tion received validation as central-hypotensive activity was observed for 4-[3-aryl(thio/sulfono)propyl] piperazines/piperidines (Rao, Srimal, Audry, Carpy \& Saxena, 1991). The title compound is the most promising one of the series. Its molecular structure is comparable with that of 1-(3-methyl-phenyl)-4-(2- β-quinolylethyl)piperazine (centhaquin) (Carpy \& Saxena, 1991).

References

Carpy, A. \& Saxena, A. K. (1991). Acta Cryst. C47, 227229.

Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1980). multan80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Murti, A., Bhandari, K., Ram, S., Prabhakar, Y. S., Saxena, A. K., Jain, P. C., Gulatt, A. K., Srimal, R. C., Dhawan, B. N., Nityanand, S. \& Anand, N. (1989). Indian J. Chem. 28B, 934-942.
Rao, J., Saxena, A. K., Saxena, R. M., Singh, H. K., Kar, K. \& Srimal, R. C. (1987). Indian J. Chem. 26B, 761-765.
rao, J., Srimal, R. C., Audry, E., Carpy, A. \& Saxena, A. K. (1991). Med. Chem. Res. 1, 95-100.

Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1991). C47, 2706-2708

Structure and Absolute Configuration of (3S)-[(1S,2R,4S)-2-Acetoxy-4-methyl-1-cyclohexyl]-2,2-dichloro-3-methylcyclobutanone

By J. Zukerman-Schpector and E. E. Castellano
Instituto de Física Química de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560 São Carlos - SP, Brazil
and Timothy J. Brocksom and Lucimar A. Moreira
Departamento de Química, Universidade Federal de São Carlos, Caixa Postal 676, 13560 São Carlos - SP, Brazil

(Received 14 June 1991; accepted 2 July 1991)

Abstract

C}_{14} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{3}, M_{r}=307.22\), orthorhombic, $P 2_{1} 2_{1} 2_{1}, \quad a=7.0329$ (7), $\quad b=9.983$ (2), $\quad c=$ 22.644 (6) $\AA, \quad V=1589.8$ (9) $\AA^{3}, \quad Z=4, \quad D_{x}=$ $1.284 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Мo $K \alpha)=0.71073 \AA, \mu=4.1 \mathrm{~cm}^{-1}$, $F(000)=648, \quad T=298 \mathrm{~K}, \quad R=0.0412$ for 1533 observed reflections. The cyclobutanone ring is puckered with a dihedral angle between $\mathrm{C}(1)-\mathrm{C}(2)$ $\mathrm{C}(4)$ and $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ of $22.0(8)^{\circ}$. The carbonyl O atom is displaced from the $\mathrm{C}(1)-\mathrm{C}(2)-$ C(4) plane to the endo side by $0.109(5) \AA$. The absolute configuration of the molecule was ascertained both by chemical means and by a comparison of the R_{g} values for the determined structure and its inverse.

Experimental. Crystals of the title compound were obtained from ethyl acetate at 277 K . The data collection and refinement parameters are summarized in Table 1.

The structure was solved using standard direct methods and difference Fourier techniques. In the final cycles of full-matrix least-squares refinement all non-H atoms were treated anisotropically. H atoms included, as fixed contributors, at positions found
from a difference synthesis, all with a common isotropic temperature factor that refined to $U=$ 0.108 (4) \AA^{2}. Data were corrected for Lp and absorption, max. and min. transmission factors $1.88,0.76$ (Walker \& Stuart, 1983). Scattering factors for non-H atoms were taken from Cromer \& Mann (1968) with corrections for anomalous dispersion from Cromer \& Liberman (1970), for H atoms scattering factors were taken from Stewart, Davidson \& Simpson (1965). Programs used: SHELX76 (Sheldrick, 1976) and ORTEP (Johnson, 1965). Most of the calculations were performed on a VAX 6420 computer of the Instituto de Física e Química de São Carlos.

Atomic coordinates are listed in Table 2,* bond lengths and bond angles are listed in Table 3. Fig. 1 is a projection of the molecule showing the atom labeling.

[^0]Table 1. Crystallographic summary
Data collection

Number, range (${ }^{\circ}$)
Diffractometer
Mode
Scan rate $\left({ }^{\circ} \min ^{-1}\right)$
θ range (${ }^{\circ}$)
Range of $h k l$
Total reflections measured
Unique reflections
$R_{\text {int }}$
Standard reflection
Variation
Crystal disk shape
Diameter (mm)
Thickness (mm)
Structure determination
Reflections used [$I>3 \sigma(I)$] No. of variables Function minimized
w
$R, w R$

Max. shift/e.s.d.
Max., min. density in final difference map (e \AA^{-3}) S
Secondary-extinction correction χ
$23,9<\theta<21$
Enraf-Nonius CAD-4, graphite
\quad monochromator
$\omega-2 \theta$
$2.8-10.0$
$0-25$
$-8 \leq h \leq 8,0 \leq k \leq 11,0 \leq l \leq 26$
2641
2459
0.023
$0,0,18$
None significant

0.30
0.20

1533
174
$\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$
$\left[\sigma^{2}\left(F_{o}\right)+0.0003 F_{o}^{2}\right]^{-1}$
$0.0412,0.0449$
0.002
$0.25,-0.23$
1.52
$F_{\text {corr }}=F_{c}\left(1.0-10^{-4}\right) \chi F_{c}^{2} / \sin \theta$
0.003

* By least-squares refinement of the setting angles.

Table 2. Final atomic coordinates and equivalent isotropic temperature factors (\AA^{2})

	$B_{\text {eq }}=(4 / 3) \sum_{i} \sum_{j} \boldsymbol{\beta}_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.			
	x	y	z	$B_{\text {eq }}$
$\mathrm{Cl}(1)$	-0.2772 (2)	-0.0217 (1)	-0.3046 (1)	7.91 (6)
$\mathrm{Cl}(2)$	-0.5136 (3)	-0.2202 (2)	-0.2491 (1)	8.05 (6)
$\mathrm{O}(1)$	-0.0427 (8)	-0.1997 (5)	-0.2099 (2)	11.7 (2)
$\mathrm{O}(2)$	-0.5903 (4)	-0.1986 (3)	-0.3870 (1)	4.31 (9)
$\mathrm{O}(3)$	-0.6046 (5)	-0.1050 (4)	-0.4763 (2)	7.8 (1)
C(1)	-0.135 (1)	-0.2489 (6)	-0.2491 (3)	8.5 (3)
C(2)	-0.2962 (8)	-0.1915 (5)	-0.2866 (2)	6.0 (2)
C(3)	-0.2456 (7)	-0.3004 (4)	-0.3344 (2)	5.0 (2)
C(4)	-0.1274 (8)	-0.3727 (6)	-0.2852 (3)	7.9 (2)
C(5)	-0.1113 (7)	-0.2404 (6)	-0.3801 (3)	7.1 (2)
C(6)	-0.738 (1)	-0.6298 (5)	-0.4824 (3)	9.3 (3)
C(7)	-0.6299 (6)	-0.0999 (5)	-0.4235 (2)	5.1 (2)
C(8)	-0.7149 (7)	0.0186 (5)	-0.3923 (2)	6.8 (2)
$\mathrm{C}\left(1^{\prime}\right)$	-0.3993 (5)	-0.3874 (4)	-0.3619 (2)	4.0 (1)
$\mathrm{C}\left(2^{\prime}\right)$	-0.5089 (6)	-0.3197 (4)	-0.4114 (2)	4.0 (1)
C(3')	-0.6646 (6)	-0.4094 (4)	-0.4352 (2)	5.0 (2)
$\mathrm{C}\left(4^{\prime}\right)$	-0.5849 (7)	-0.5405 (5)	-0.4585 (2)	5.6 (2)
C(5)	-0.4724 (7)	-0.6092 (5)	-0.4103 (2)	5.7 (2)
C(6)	-0.3194 (6)	-0.5195 (5)	-0.3856 (2)	5.3 (2)

Related literature. The displacement of $\mathrm{O}(1)$ from the $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(4)$ plane is $0.109(5) \AA$ and the O atom lies on the same side of the plane as $\mathrm{C}(3)$. Such endo deviations of O atoms in carbonyl groups have been observed in several cyclobutanones (Martin, Greuter, Rihs, Winkler \& Bellus, 1981; Becker, Hohermuth \& Rihs, 1982). Bellus \& Ernst (1988) suggest that this endo deviation enables an optimal

Table 3. Interatomic bond distances (\AA) and angles (${ }^{\circ}$)

$\mathrm{Cl}(1)-\mathrm{C}(2)$	1.749 (5)	$\mathrm{Cl}(2)-\mathrm{C}(2)$	1.772 (6)
$\mathrm{O}(1)-\mathrm{C}(1)$	1.204 (8)	$\mathrm{O}(2)-\mathrm{C}(7)$	1.316 (5)
$\mathrm{O}(2)-\mathrm{C}\left(2^{\prime}\right)$	1.447 (5)	$\mathrm{O}(3)-\mathrm{C}(7)$	1.210 (6)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.528 (8)	$\mathrm{C}(1)-\mathrm{C}(4)$	1.483 (8)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.575 (7)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.566 (7)
$\mathrm{C}(3)-\mathrm{C}(5)$	1.524 (7)	$\mathrm{C}(3)-\mathrm{C}\left(1^{\prime}\right)$	1.520 (6)
$\mathrm{C}(6)-\mathrm{C}\left(4^{\prime}\right)$	1.499 (8)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.502 (7)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	1.519 (5)	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	1.531 (6)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	1.514 (6)	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	1.518 (6)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	1.512 (7)	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	1.507 (7)
$\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{C}\left(2^{\prime}\right)$	118.0 (3)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	131.0 (6)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(4)$	136.6 (6)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(4)$	91.9 (5)
$\mathrm{Cl}(1)-\mathrm{C}(2)-\mathrm{Cl}(2)$	109.5 (3)	$\mathrm{Cl}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	115.9 (4)
$\mathrm{Cl}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	119.5 (3)	$\mathrm{Cl}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	108.3 (4)
$\mathrm{Cl}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	114.4 (3)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	87.4 (4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	87.1 (4)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5)$	109.6 (4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}\left(1^{\prime}\right)$	121.0 (4)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(5)$	109.6 (4)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}\left(1^{\prime}\right)$	113.9 (4)	$\mathrm{C}(5)-\mathrm{C}(3)-\mathrm{C}\left(1^{\prime}\right)$	112.8 (4)
$\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	89.4 (4)	$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{O}(3)$	123.9 (4)
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	112.2 (4)	$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(8)$	123.8 (4)
$\mathrm{C}(3)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	114.1 (3)	$\mathrm{C}(3)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	112.0 (3)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	108.1 (3)	$\mathrm{O}(2)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	106.9 (3)
$\mathrm{O}(2)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	110.1 (3)	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	111.5 (3)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	111.5 (4)	$\mathrm{C}(6)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	111.9 (4)
$\mathrm{C}(6)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	111.5 (4)	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$) 109.5 (4)
$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	111.8 (4)	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$) 112.3 (4)

Fig. 1. Perspective view of the molecule showing the atomnumbering scheme.
$s p^{2}$ hybridization at $\mathrm{C}(1)$. A chirality test was performed by reversing all atomic coordinates and refining again to convergence. The R_{g} factor $\left\{=\left[\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \sum w\left|F_{o}\right|^{2}\right]^{1 / 2}\right\} \quad$ increased \quad from 0.0498 to 0.0530 .

This work has received partial support from CNPq, CAPES, FAPESP and FINEP.

References

Becker, K. B., Hohermuth, M. K. \& Rihs, G. (1982). Helv. Chim. Acta, 65, 235-242.
Bellus, D. \& Ernst, B. (1988). Angew. Chem. Int. Ed. Engl. 27, 797-827.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324. Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Martin, P., Greuter, H., Rifs, G., Winkler, T. \& Bellus, D. (1981). Helv. Chim. Acta, 64, 2571-2586.

Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1991). C47, 2708-2709

Structure of an Enantiomerically Pure Tetrahydropyranyl Ether

By Eugene A. Mash, James A. Fryling and Pamela A. Wexler
Department of Chemistry, The University of Arizona, Tucson, AZ 85721, USA

(Received 8 April 1991; accepted 2 July 1991)

Abstract

S)-Methyl 2-phenyl-2-[(2S)-tetrahydro2(2 H)-pyranyloxy]acetate, $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}, \quad M_{r}=250.29$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=7.850$ (1), $b=8.211$ (1), $c=21.123$ (3) $\AA, \quad V=1361.5$ (3) $\AA^{3}, \quad Z=4, \quad D_{x}=$ $1.22 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo $K \alpha, \lambda=0.71073 \AA, \mu=0.8 \mathrm{~cm}^{-1}$, $F(000)=536, T=296 \mathrm{~K}, R=0.039$ for 973 unique reflections with $F_{o}^{2}>3 \sigma\left(F_{o}^{2}\right)$. In this diastereomer the anomeric alkoxy substituent is axially oriented. The absolute stereochemistry at the anomeric carbon is assigned as S based upon the known stereochemistry of the mandelate ester.

Experimental. The title compound (1) crystallized as white plates by slow evaporation from ether. It was prepared by acid-catalyzed tetrahydropyranylation of (S)-(+)-methyl mandelate using 3,4-dihydro2 H -pyran, followed by chromatographic separation of the resulting pyranoside diastereomers (1) and (2).

The title compound was the less polar of the two (Mash, Arterburn, Fryling \& Mitchell, 1991). Diastereomer (2) could not be induced to crystallize. The data crystal had dimensions $0.50 \times 0.50 \times 0.30 \mathrm{~mm}$. A Syntex $P 2_{1}$ diffractometer using Mo $K \alpha$ radiation ($\lambda=0.71073 \AA$) and equipped with a graphite monochromator was used to collect the data. The lattice parameters were obtained from the least-squares refinement of 25 reflections with $20<2 \theta<30^{\circ}$. The data were collected from the hkl octant using the $\theta-2 \theta$ scan technique to a maximum 2θ of $50.0^{\circ}(0<$ $h<10,0<k<10,0<l<26)$. The ratio of peak counting time to background counting time was 2:1.

As a check on crystal and electronic stability, two representative reflections were measured after every 98 reflections. The total loss in intensity was 7.8%; a linear decay correction was applied. Lorentz and polarization corrections were also applied to the data, but no absorption correction was made. Of 1442 reflections measured, 1419 were unique and not systematically absent. Reflections having $F_{o}^{2}<$ $3 \sigma\left(F_{o}^{2}\right)$ were considered unobserved (446 reflections). The structure was solved by direct methods and refined by full-matrix least squares where the function minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$. H atoms were added at idealized positions and included in the refinement but restrained to ride on the atom to which they were bonded. All non-H atoms were refined anisotropically. In all, 163 parameters were refined. The refinements converged with $R=0.039$, $w R=0.047$, the e.s.d. of an observation of unit weight $=0.44$, and a final shift to e.s.d. ratio of 0.00 . The weights for each reflection were calculated using the counter weighting scheme $w=4\left(F_{o}^{2}\right) / \sigma^{2}\left(F_{o}^{2}\right)$. The minimum and maximum peaks in the final ΔF map were -0.14 and $0.18 \mathrm{e} \AA^{-3}$, respectively, and the maximum $|\Delta / \sigma|$ was 0.03σ. Scattering factors were taken from Cromer \& Waber (1974). Anomalousdispersion effects were included in F_{c} (Ibers \& Hamilton, 1964) and the values for f^{\prime} and $f^{\prime \prime}$ were those of Cromer (1974). All calculations were performed on a MicroVAX computer using SDP/VAX (Frenz, 1978). Atomic coordinates are listed in Table 1, while bond lengths and angles are listed in Table 2.* The atom-labeling scheme is shown in Fig. 1.

[^1]
[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54419 (13 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54422 (11 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

